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In Silica Fertilization

All Science

[s Computer
Science

By GEORGE JOHNSON

KCEPT for the fact that everything, including
DNA and proteins, is made from quarks, parti- New York Times,
cle physics and biology don't seem to have a lot Sunday, March 25, 2001
in common. One science uses mammoth particle '
accelerators to explore the subatomic world; the other
uses petri dishes, centrifuges and other laboratory para-
phernalia to study the chemistry of life. But there is one
tool both have come to find indispensable: supercom-
puters powerful enough to sift through piles of data that
would crush the unaided mind.

Last month both physicists and biologists made
announcements that challenged the tenets of their fields.
Though different in every other way, both discoveries
relied on the kind of intense computer power that would
have been impossible to marshal just a few years ago. In
fact, as research on so many fronts is becoming increas-
ingly dependent on computation, all science, it seems, is
becoming computer sclence,

“Physlcs is almost entirely eomputational now,™
said Thomas B. Kepler, vice president for academic
affairs at the Santa Fe Institute, a multidisciplinary
research E::ter in Newmh:eﬂm. “Mobody would dream

; of doing these big accelerator experiments without a
April 25, 2001 tremendous amount of computer power to analyze the
data."




Introduction

e Particle and nuclear physics use beams of particles
striking targets to study the fundamental nature of
matter and interactions.

e Advances in the field have come from:
- Higher Energy Particles and Interactions
— More collisions per unit time and space (luminosity)
- Better detectors

e More sensitivity, more granular, fewer cracks, lower
deadtime, more radiation-hard

- More “events” saved to storage (disk or tape)

— More sophisticated analysis of “events”

- Better simulation of the beams, collisions, and detector
— Advances in Theory
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Collisions Simplified

e Collider: p ‘P 5
AU AU

 Fixed-Target: E .'
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Collisions - CDF/Fall 2000
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Collision at RHIC from STAR and PHOBOS
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Particle Acceleration

e Particle acceleration occurs in a multi-step
process

e Example: Fermilab

— Cockcroft-Walton

- Linac

— Booster

- Main Injector

— Tevatron
 Anti-Protons

- Accumulator/debuncher

- Recycler
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Cockcroft-
Walton
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Tevatron
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Particle Detectors

e Large detectors are used to “see” the
Interactions of particles.

e Consist of subdetectors which record
iInformation about particle position, energy and
momentum.

- Used to measure the number and types of
particles coming from collisions.

— Also used to identify particle decays.
e, umy,p, KW, ZDb,c,..
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D@ Detector
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Jefferson Lab
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Physics to Raw Data
(taken from Hans Hoffman, CERN)

et T 2037 2446 1733 1699
/ 4003 3611 952 1328
——— - \\// \\.\ﬂ: 2132 1870 2093 3271
— | d 4732 1102 2491 3216
Z0\ SN : 2421 1211 2319 2133
f 34511942 1121 3429
e- 3742 1288 2343 7142
Fragmentation, Interaction with Detector Raw data
Decay detector material response (Bytes)
Multiple scattering,Noise, pile-up,
interactions cross-talk, Read-out
meEflCl_?[ncy, addresses,
amoigulty, ADC, TDC
resolution, values
response : ’
alignment,
temperature
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From Raw Data to Physics

e ————————————————————————

2037 2446 1733 1699 et 1
il
e- T

4003 3611 952 1328

2132 1870 2093 3271
4732 1102 2491 3216 _ \\//_
2421 1211 2319 2133 &

34511942 1121 3429
3742 1288 2343 7142

Raw data Detector Interaction with Fragmentation, Basic physics
response detector material Decay

Convert to apply Pattern, Physics Results

physics calibration, recognition, analysis

quantities alignment, Particle

iIdentification

— Analysis
Reconstruction ﬁ

Simulation (Monte-Carlo)

e ——————————————————————
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Computing Connection

Desired Improvement Computing Technigue

Higher energy » Accelerator Design/simulation

More collisions » Acc. Design and controls

Better detectors —— Triggers (networks, CPU), simulation
More events » Disk, tape, CPU, networks

Better analysis ——p Disk, tape, CPU, networks, algorithms
Simulation » CPU, algorithms, OO

Theory » CPU, algorithms, OO
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Example - Higgs Search at CDF and DO at
the Tevatron

« Proton and Antiproton beam
energy has been increased to
1 TeV (actually 980 GeV)
and the luminosity of
collisions has been (will be)
dramatically increased

- The pbar upgrades were
modeled and tested on the
Fermilab compute farms,
as were the Recycler Ring
design and Tevatron T — 5 ]
tuning. 80 100 120 WO B0 1BO 200

- Many of these calculations Higgs moss (Gev/c?)
and tunings continue
today.

cormbingd CDF /DO threshoids

a0 &

{10 1™

2 i
— OBX CL fimit
— R cgaidcrw-:::

— 37 dISGovery
'l L .rrl

integroted minosity/expt. (fb™)
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Computing and Particle/Nuclear Physics
Advances

e HENP has always required substantial computing
resources
— Computing advances have enabled “better physics”
— Physics research demands further computing advances

— Physics and computing have worked together over the
years

—a= W

Computing Advances Physics Advances

. F
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Examples

e« Data acquisition systems have advanced to allow
Increased data writing

— Higher bandwidth DA systems
— More sophisticated triggers, including software
triggers

- Even with the same beam and detector, an
experiment can increase the “physics reach” by
taking more data

e Increased computing power allows analysis of
larger and larger datasets

— This In turn allows for increased DA volume

April 25, 2001 Stephen Wolbers, Jefferson Lab 23
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Charm Physics

e Early experiments were able to study only a
few hundred events.

e A series of experiments at Fermilab pushed to
write a huge amount of data (for the time) iIn
order to increase the statistics dramatically.

e This was possible because of the availability of
large offline computing capability (“compute
farms”) to cope with the large data samples.

April 25, 2001 Stephen Wolbers, Jefferson Lab 24
Colloguium



Data Volumes for HENP Experiments
(in units of 10° bytes)

Volume=c L ¢E

o = Cross Section
L = Luminosity
e = Efficiency for collecting data

1200000 E = Event size ® 5601
E665
1000000 ‘ .
800000 = E791
H CDF/DO
600000 ® KTev
W Eg71
400000
3 A BABAR
2 /
200000 :J A CMS/ATLAS
: N E831
° v - i . e B ALEPH
1980 1985 1990 1995 2000 2005 2010 A JLAB
RHIC
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units of 10° bytes)

1000000

100000

10000

1000

Data Volume doublesevery 2.4 ygars
100 N N N N Y Y N N O Y N N N O N Y BN Y Y B

1980 1985 1990 1995 2000 2005 2010
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Data Rates, Facilities and Techniques

April 25, 2001 Stephen Wolbers, Jefferson Lab
Colloquium

27



Run 2a Computing

e Data Rates and Volume
e Software Development
e« Computing Model

- Event Reconstruction

— Analysis

- Mass Storage

April 25, 2001 Stephen Wolbers, Jefferson Lab
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Run 2a Computing

e« Scope of Computing Problem

Data volume of ~1 Pbyte (over 2 years, CDF+DO)
(Pbyte = 10 bytes = 1,000,000 Gbytes)
e Typical hard disk is 20 Gbytes, DVD is 5 Gbytes.

Rates out of detector to storage up to 20 Mbyte/sec
(each detector).

CPU for event reconstruction of about 5 sec/event on a
PI11/500 MHz PC (Each event is 250 Kbyte).

CPU for data analysis is supplied on large SMP systems
and Linux desktops.

Large disk arrays (>50 Thyte).

100’s of physicists spread across the world need to
analyze the data.
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Software Development

e Event Reconstruction Software
— Written by physicists.

— Translates detector output (ADC counts, TDC,
hit maps) into energy measurements, particle
positions and directions and momentum.

— Written in FORTRAN In previous runs.
— Written in C++ in Run 2.

- Hundreds of packages or modules, millions of
lines of code, many 10’s of authors.

April 25, 2001 Stephen Wolbers, Jefferson Lab
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C++ Experience

Big change from procedural to object-oriented
language.

Some resistance.
Large training requirements.

Need for C++ experts to support the physicists
on design and coding.

— Two individuals were hired by Fermilab to
provide that support.

The code runs, iIs probably as fast or faster
than Fortran code, and in general the exercise
has been successful.

Most (not all) new experiments choose C++ for
offline event reconstruction.

April 25, 2001 Stephen Wolbers, Jefferson Lab 32
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Was the transition to C++ beneficial?

e I'm not an expert and haven't worked with the
code directly.

e The answer probably won't be known for some
time:
— Will code be more easily maintainable?
- Will the code be more robust?

— Wil the code be as fast or at least not too
slow?

- Will we be aligned better with industry and
other code developers?

April 25, 2001 Stephen Wolbers, Jefferson Lab 33
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Other software for Run 2

« Mixture of commercial, lab-developed and open
source.

e Each product is chosen based on its ability to
solve a problem and on its cost (both to write

and to support).
 Long list of products, some examples:
- Linux, gcc, emacs, MySQL
- KAl C++ compiler, LSF (Batch system), Purify
- FBS, Enstore, SAM, ftt, ZOOM
- GEANT3/4, ROOT

April 25, 2001 Stephen Wolbers, Jefferson Lab
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Computing Model for Run 2a

e CDF and DO have similar but not identical
computing models.

- In both cases data is logged to tape stored in
large robotic libraries.

— Event reconstruction is performed on large
Linux PC farms.

— Analysis is performed on medium to large multi-
processor computers

- Final analysis, paper preparation, etc. Is
performed on Linux desktops or Windows
desktops.

April 25, 2001 Stephen Wolbers, Jefferson Lab 36
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Support for Run 2 Computing

It takes many people to build and support Run 2
computing systems

— Design and build: 20-30 people per experiment

e This includes code development and systems
Integration. Other support like networks,
system administration is not included here.

- Maintain: About 35 people per experiment

e This includes product support, networks,
system administration, etc.

- Some of this support is provided by scientists
from the two experiments.
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Runll Data Flows

Stephen Wolbers HEP-CCC June 25, 1999
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CDF/DO0O Offline Production Farms
for event reconstruction

e The CDF/DO farms must have sufficient
capacity for Run 2 Raw Data Reconstruction.

e The farms also must provide capacity for any
reprocessing needs.

e Farms must be easy to configure and run.
e The bookkeeping must be clear and easy to use
 Error handling must be excellent.

April 25, 2001 Stephen Wolbers, Jefferson Lab 41
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Requirements for CDF (CPU)

e CPU goal is <5 seconds/event on PI111/500
« Assuming 70% efficiency this translates to

- 200 P111/500 equivalents (each is about 20
Specint95)

- 4200 SpeclInt95

e Adding In reprocessing, simulation, responding to
peak rates

- 300-400 PI111/500 equivalents (150-200 duals)
- 6300-8400 SpecInt95

April 25, 2001 Stephen Wolbers, Jefferson Lab 42
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Run Il CDF PC Farm
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Design/Model

Hardware

— Choose the most cost-effective CPU's for the
compute-intensive computing.

— This is currently the dual-Pentium architecture

- Network is fast and gigabit ethernet, with all
machines being connected to a single or at most
two large switches.

- A large 1/0 system to handle the buffering of
data to/from mass storage and to provide a
place to split the data into physics datasets.
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Software Model

e Software consists of independent modules
- Well defined interfaces
— Common bookkeeping
- Standardized error handling
e Choices
— Python
- MySQL database (internal database)
- FBSNG (Farms Batch System)
— FIPC (Farms Interprocessor Communication)
- CDF Data Handling Software

April 25, 2001 Stephen Wolbers, Jefferson Lab
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Conceptual Model of Run 2 Production System

DATABASE | DATA : | MONITOR DATA

i P BT wo
: : ? i [coloo]

e | e | SK
E[Dmalm]i[Emss]ii Mass ii[Express]
i Server i Data Source | || Storage i i Data Sink

Phyaics Data Disks

SplitvConcatenate

Monitor Data
. Dizka
e il - oy e

........... e |

Databaze Inclusive Data Disks

Disk !

Output Node
= Worker Node
Reconstmct
-: ==
Input Disk Cutput Disk

Legends: Systemn Aty pe of computeror system
—> Copydata —= tlovcdata — — = Blowe database
—= hlove/genzration of monitor data Lagical disk space
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Physics Analysis Requirements and Impact

Raw Data Files come in ~8 flavors, or streams
— 1 Gbyte input files

e Reconstruction produces inclusive summary files
- 250 Mbyte output files

e QOutput Files must be split into ~8 physics
datasets per input stream

- Target 1 Gbyte files
— About 20% overlap

 Leads to a complicated splitting/concatenation
problem, as input and output streams range
from tiny (<few percent) to quite large (10’s of
percent)
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Status of CDF/DO0O Farms

e 88+97 PC’s are in place.
— 48+47 P111/500 duals
- 40+53 P111/750 or 800 duals

e 60 more PC’'s are on order (PI111/1 GHz duals)

e 1/0 nodes are ready.

e Integration and testing of the system is complete.
— 20 Mbyte/sec can be achieved.

e The CDF system is being used to process and reprocess
data from the commissioning run (about 1.3 Tbytes taken
in October, 2000) and both systems are used to generate
and reconstruct simulated data.

e Both are ready for raw data reconstruction.
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Analysis Computing - Run 2a
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Analysis Computing

e Each system has:
— Access to data on tape.
e DO access is over the network
e CDF access is via SCSI connected peripherals
— Access to disk storage.
e About 30 Tbytes attached to central systems

e This will increase, especially as disk prices continue to
fall

- LSF Batch software is used to schedule jobs and manage
resources on these systems.
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Proposed D0 Analysis Computing Configuration

|M1:|n.rer Mover | |DMMowver Mdowver Mdover Mower 15-20 MBps Farm
a _ __:—J——,_/l— . |I | each mover q_.
J+ MBps . e B
High Speed Network MBS
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= | | B Efoo: B B o1, B
20 TB MP —@ DMP i -
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Data Access Model: CDF
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Analysis Computing

e The large SGI iIs a conservative (and expensive)
solution to analysis computing needs.

e Both collaborations are exploring the use of
PC's + EIDE disk + 100 Mbit or 1 Gbit network
connection for analysis.

e These projects may lead the way to more cost-
effective solutions for the analysis of the large
amount of data that will be taken in Run 2a and
Run 2b.
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PC analysis computing -- examples
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aa Storing Petabytes of Data in mass storage
B Storing (safely) petabytes of data is not easy

or cheap.

Need large robots (for storage and tape
mounting).

Need many tapedrives to get the necessary 1/0
rates.

e Tapedrives and tapes are an important part
of the solution, and has caused some
difficulty for Run 2.

Need bandwidth to the final application
(network or SCSI).

Need system to keep track of what is going on
and schedule and prioritize requests.

April 25, 2001 Stephen Wolbers, Jefferson Lab 61

Colloguium



Robots and tapes
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Tapedrives and tapes

Tapedrives are not always reliable, especially when one is
pushing for higher performance at lower cost.

e Run 2 choice is Exabyte Mammoth 2.
- 60 Gbytes/tape.
— 12 Mbyte/sec read/write speed.
— About $1 per Gbhyte for tape. (A lot of money.)
- $5000 per tapedrive.
e AIT2 from SONY is the backup solution.

« The robotics which exist can handle most any tapedrive
technology.

e Given the Run 2 timescale, upgrades to newer technology
will occur.

e Finally, Fermilab is starting to look at PC diskfarms to
replace tape completely.
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Software system, Jasmine,
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RHIC Computing

e Computing problem is very similar and is in fact
somewhat larger than the Run 2a computing
problem.

e For Nominal Year Operations, 2001/2002

- Aggregate Raw Data Recording at 60
MBytes/sec

— Annual Data Storage: 1 PByte

- Online Storage: 40 TBytes

— Online Data Access at 1 GByte/sec

- Installed Compute Capacity: 20,000 SPECInt95
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RHI1C Computing Facility

Managed Data Server

Shelf Robotic HPSS UNIX .
Tape Tape Disk Disk Central AnalyS|S
| | | Server
HPSS Core NFS File Back SMP Interactive Farm
Server HPSS Data Movers Server Plane CPU's CPU's CPU's
] 1

\ /I’:—QCF Gbit/Fashi\ \\/E)(wrnal Wlde \

Area Network

. RHIC / Ethernet Switching \ __________________

Experlments / Fabric

~\~
~~~~~
-~ -
..........

-7

t
Farm Software Interactive Gatewa
CPU's Devel Services y
Central . Backup User, etc. | | AFS
Reconstruction System Disk Servers
Server .
General Computing
Environment

April 25, 2001 Stephen Wolbers, Jefferson Lab
Colloguium



R

—r ........I.._._.I_.._i.l_ﬂl....—.-l..-.l._.l.n.-.r.._._.....III

70

Stephen Wolbers, Jefferson Lab

April 25, 2001

Colloguium



Jefferson Lab Computing

e Jefferson Lab Computing Problem is also quite
substantial
- Data rates are comparable to CDF/DO/RHIC.

- Need large reconstruction, storage, and
analysis systems.

— Future increases (for new beams and facilities)
will have to be handled.
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Lattice QCD

e Lattice QCD is a powerful approach to study
QCD and to calculate fundamental quantities in
the theory.

e Lattice QCD calculations require extremely
large computing power in a tightly-coupled
computing architecture (because of the demand
for fast, low-latency communications).

e The computers used for this are almost always
special-purpose machines, designed for this
class of calculations

e Examples include, APE, Columbia machine,
ACPMAPS, etc.
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Commodity Lattice Gauge Machine

« ldea: Take advantage of commodity hardware and
software to build a large lattice QCD machine.

e Goal: 10 Teraflop peak performance as cheaply as
possible.
e R&D at Fermilab (similar work at Jefferson lab).
- Small Machine (80 dual PC’'s) has been purchased and is
being integrated at Fermilab.

— Much larger machine (on order 1000 PC’'s) will be built
assuming that funding is available, no serious problems
are found in scaling, etc.

— Workshop was held March 26-28 at Fermilab to discuss
the current ideas and progress.
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Old and New Lattice Gauge Computing at
Fermilab
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Accelerator Design and Tuning

« Computing is essential for accelerator design and tuning:
— Optimizing design of future accelerators:
e Electron-positron linear collider
e Muon collider/neutrino factory
* Very Large Hadron collider
— Getting the most out of current machines:
e Higher luminosity
 With lower backgrounds/halo, etc

— Parallel computing can potentially decrease the time
taken to properly simulate each configuration and allow
for faster and more complete design.
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Accelerator Design and Computing

Parallel Performace Increase
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Run 2b at Fermilab

e Run 2b will start in 2004 and will increase the integrated
luminosity to CDF and DO by a factor of approximately 8
(or more if possible).

It is likely that the computing required will increase by
the same factor, in order to pursue the physics topics of
interest:

— B physics

- Electroweak

- Top

- Higgs

— Supersymmetry
- QCD

- Etc.
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Run 2b Computing

e Current estimates for Run 2b computing:
- 8x CPU, disk, tape storage.

- Expected cost is same as Run 2a because of
Increased price/performance of CPU, disk, tape.

- Plans for R&D testing, upgrades/acquisitions
will start next year.

e Data-taking rate:
- May be as large as 80 Mbyte/s.
— About 1 Petabyte/year to storage.
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LHC Computing

e LHC (Large Hadron Collider) will begin taking
data in 2006-2007 at CERN in Switzerland.

e Data rates per experiment of 100 Mbytes/sec.

e 1 Pbyte/year of storage for raw data per
experiment.

« World-wide collaborations and analysis.

— Desirable to share computing and analysis
throughout the world.

— GRID computing may provide the tools.
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World Wide Collaboration
= distributed computing & storage capacity
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CMS/ATLAS and GRID Computing
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Fermilab Networking and connection to
Internet
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Are Grids a solution?

ii omputational Grids Les Robertson, CERN
‘tﬂ Change of orientation of Meta-computing activity

- From inter-connected super-computers
..... towards a more general concept of a
computational power Grid (The Grid - lan Foster,
Carl Kesselman™)

. Has found resonance with the press, funding
agencies

But what is a Grid?

“Dependable, consistent, pervasive access to
resources™™”

So, in some way Grid technology makes it easy to use
diverse, geographically distributed, locally managed
and controlled computing facilities - as it they
formed a coherent local cluster

** lan Foster and Carl Kesselman, editors, “The Grid: Blueprint for a New Computing Infrastructure,” Morgan
Kaufmann, 1999
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What does the Grid do for you?

Les Robertson

You submit your work

. And the Grid

— Finds convenient places for it to be run

— Organises efficient access to your data
e Caching, migration, replication

— Deals with authentication to the different sites that
you will be using

— Interfaces to local site resource allocation
mechanisms, policies

— Runs your jobs

— Monitors progress

- Recovers from problems

— Tells you when your work is complete

. IT there is scope for parallelism, it can also decompose
your work into convenient execution units based on the
available resources, data distribution
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PPDG GRID R&D

Richard Mount, SLAC
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GriPhyN Overview
(www.griphyn.org)

5-year, $12M NSF ITR proposal to realize the concept
of virtual data, via:

1) CS research on

e Virtual data technologies (info models, management of
virtual data software, etc.)

e Request planning and scheduling (including policy
representation and enforcement)

e Task execution (including agent computing, fault
management, etc.)

2) Development of Virtual Data Toolkit (VDT)
3) Applications: ATLAS, CMS, LIGO, SDSS
e Pls=Avery (Florida), Foster (Chicago)
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User View of PVDG Architecture
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GRID Computing

e GRID computing is a very hot topic at the
moment.

e HENP is involved in many GRID R&D projects,
with the next steps aimed at providing real
tools and software to experiments.

e The problem is a large one and it is not yet
clear that the concepts will turned into
effective computing.

- CMS@HOME?
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Conclusions

e« Computing in HENP is a vital tool for extracting
physics results, especially as the volume of data
continues to dramatically increase.

e The challenges grow rapidly, certainly as fast
or faster than advances in computing hardware
and software techniques.

 Future experiments/accelerators/theory will
continue to more heavily rely on computing, and
new ideas like GRID computing will be pursued.
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